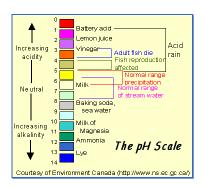
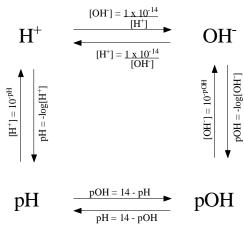
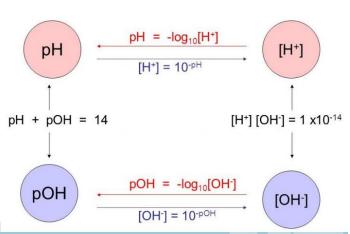
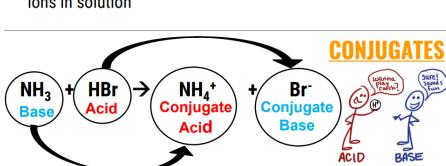

ACIDS AND BASES REFERENCE SHEET

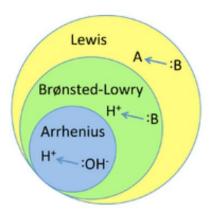



7 Strong Acids (H ⁺)		8 Strong Bases (OH ⁻)	
All other acids are weak		All other bases are weak	
Hydrochloric acid	HCI	Lithium hydroxide	LiOH
Hydrobromic acid	HBr	Sodium hydroxide	NaOH
Hydroiodic	HI	Potassium hydroxide	KOH
Perchloric acid	HClO₄	Rubidium hydroxide	RbOH
Chloric acid	HClO ₃	Cesium hydroxide	CsOH
Nitric acid	HNO ₃	Calcium hydroxide	Ca(OH) ₂
Sulfuric acid	H ₂ SO ₄	Strontium hydroxide	Sr(OH) ₂
		Barium hydroxide	Ba(OH) ₂


Memorize these 15, ALL ELSE ARE considered WEAK

Arrhenius

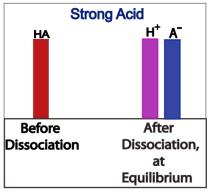

- Acids make H⁺ ions in aqueous solutions
- Bases make OHions in solution

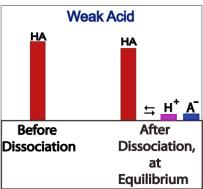

Bronsted-Lowry

- Acids donate protons
- Bases accept protons

<u>Lewis</u>

- Acids accept electron pairs
- Bases donate electron pairs

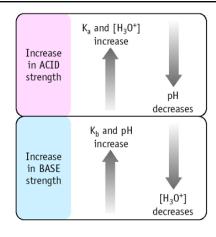




STRONG ACIDS						
Acid	Formula	Conj. Base	Ka			
Perchloric	HCIO ₄	CIO ₄ -	Very large			
Hydriodic	HI	ŀ	Very large			
Hydrobromic	HBr	Br	Very large			
Hydrochloric	HCI	CI-	Very large			
Nitric	HNO ₃	NO ₃ -	Very large			
Sulfuric	H ₂ SO ₄	HSO ₄ -	Very large			
Hydronium ion	H₃O ⁺	H ₂ O	1.0			

COMMON WEAK ACIDS					
Acid	Formula	Conj.Base	Ka		
lodic	HIO ₃	IO ₃ -	1.7 x 10 ⁻¹		
Oxalic	H ₂ C ₂ O ₄	HC ₂ O ₄ -	5.9 x 10 ⁻²		
Sulfurous	H ₂ SO ₃	HSO₃ ⁻	1.5 x 10 ⁻²		
Phosphoric	H ₃ PO ₄	H ₂ PO ₄ -	7.5 x 10 ⁻³		
Citric	H ₃ C ₆ H ₅ O ₇	H ₂ C ₆ H ₅ O ₇ -	7.1 x 10 ⁻⁴		
Nitrous	HNO ₂	NO ₂ -	4.6 x 10 ⁻⁴		
Hydrofluoric	HF	F ⁻	3.5 x 10 ⁻⁴		
Formic	НСООН	HCOO-	1.8 x 10 ⁻⁴		
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO⁻	6.5 x 10 ⁻⁵		
Acetic	CH₃COOH	CH₃COO⁻	1.8 x 10 ⁻⁵		
Carbonic	H ₂ CO ₃	HCO₃ ⁻	4.3 x 10 ⁻⁷		
Hypochlorous	HCIO	CIO-	3.0 x 10 ⁻⁸		
Hydrocyanic	HCN	CN ⁻	4.9 x 10 ⁻¹⁰		

COMMON WEAK BASES					
Base	Formula	Conj. Acid	Kb		
Ammonia	NH ₃	NH ₄ +	1.8 x 10 ⁻⁵		
Methylamine	CH₃NH₂	CH₃NH₃+	4.38 x 10 ⁻⁴		
Ethylamine	C ₂ H ₅ NH ₂	C ₂ H ₅ NH ₃ +	5.6 x 10 ⁻⁴		
Diethylamine	(C ₂ H ₅) ₂ NH	(C ₂ H ₅) ₂ NH ₂ +	1.3 x 10 ⁻³		
Triethylamine	(C ₂ H ₅) ₃ N	(C ₂ H ₅) ₃ NH ⁺	4.0 x 10 ⁻⁴		
Hydroxylamine	HONH ₂	HONH₃+	1.1 x 10 ⁻⁸		
Hydrazine	H ₂ NNH ₂	H ₂ NNH ₃ +	3.0 x 10 ⁻⁶		
Aniline	C ₆ H ₅ NH ₂	C ₆ H ₅ NH ₃ +	3.8 x 10 ⁻¹⁰		
Pyridine	C ₅ H ₅ N	C₅H₅NH⁺	1.7 x 10 ⁻⁹		


You can convert back and forth from Ka to Kb using this equation:

Kw = Ka x Kb

Strong Acid $\xrightarrow{makes a}$ Weak Conj. Base Large Ka Small Kb

Weak Acid $\xrightarrow{makes a}$ Strong Conj. Base Small Ka Large Kb

Strong Base $\xrightarrow{makes a}$ Weak Conj. Acid Large Kb Small Ka Large Ka

WEAK ACIDS AND BASES CALCULATIONS

- Dissociation is a reversible reaction!
- So use Equilibrium Expressions, K values, and Ice Tables to find []'s before doing pH type calculations
- Equilibrium Expression still $\frac{Products}{Reactants}$ which will be $\frac{[Dissociated\ Ions]}{[Undissociated\ Molecule]}$
- To find pH (or pOH) of something you first have to know the [H₃O₊] (or [OH-])
 - o For weak acids/bases you need to do the following steps to find those []'s
 - Step 1 ICE Table
 - Step 2 Write a Ka expression (or Kb depending on the problem)
 - Step 3 Solve for x using either quadratic or 5% rule
 - Step 4 put x back into ICE Table to find the actual [] answers
 - Step 5 use your [H₃O⁺] (or [OH⁻]) to find the pH (or pOH)

MONOPROTIC VS. POLYPROTIC – HOW MANY IONS COME OFF?

- Monoprotic acids/bases → only have one H⁺ or OH⁻
- Diprotic acids/bases → have two H⁺ or OH⁻
- Triprotic acids/bases → have three H⁺ or OH⁻

Strong Bases

- o all OH come off
 - Take that into account with your stoichiometry when finding the [OH⁻]
 - 1 M Ca(OH)₂ = 2 M of OH⁻ ions

• Strong Acids

- The first H⁺ comes off and it would be a normal strong acid type pH calculation
 - No Ka value needed
 - No ICE Table needed.
- The second/third/etc H⁺ might come off <u>BUT</u>
 - That would be a weak reaction and you would need:
 - Ka value for that second H⁺ coming off
 - Would need to do an ICE table
 - Then add the [H+] from the ICE Table calculation to the [H+] you found from the first H+ coming off.
- Example: H₂SO₄ → H⁺ + HSO₄⁻
 Only assume one H⁺ comes off unless given Ka value for HSO₄⁻ → H⁺ + SO₄²-

Weak Acids/Bases

- For the given Ka or Kb value assume only one H⁺/OH⁻ comes off.
- You would need a second Ka or Kb value to do a second ICE Table for the second H⁺/OH⁻ coming off, and then would need to add your []'s from each ICE Table calculation.